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ABSTRACT
This experience report describes a style of applying symbolic model
checking developed over the course of four years at Amazon Web
Services (AWS). Lessons learned are drawn from proving properties
of numerous C-based systems, e.g., custom hypervisors, encryp-
tion code, boot loaders, and an IoT operating system. Using our
methodology, we find that we can prove the correctness of industrial
low-level C-based systems with reasonable effort and predictability.
Furthermore, AWS developers are increasingly writing their own
formal specifications. All proofs discussed in this paper are publicly
available on GitHub.

CCS CONCEPTS
• Software and its engineering→ Formal software verification;
Model checking; Correctness; •Theory of computation→ Program
reasoning.
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1 INTRODUCTION
This is a report on making code-level proof via model checking
a routine part of the software development workflow in a large
industrial organization. Formal verification of source code can have
a significant positive impact on the quality of industrial code. In

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7123-0/20/05.
https://doi.org/10.1145/3377813.3381347

particular, formal specification of code provides precise, machine-
checked documentation for developers and consumers of a code
base. They improve code quality by ensuring that the program’s
implementation reflects the developer’s intent. Unlike testing, which
can only validate code against a set of concrete inputs, formal proof
can assure that the code is both secure and correct for all possible
inputs.

Unfortunately, rapid proof development is difficult in cases where
proofs are written by a separate specialized team and not the software
developers themselves. The developer writing a piece of code has
an internal mental model of their code that explains why, and under
what conditions, it is correct. However, this model typically remains
known only to the developer. At best, it may be partially captured
through informal code comments and design documents. As a result,
the proof team must spend significant effort to reconstruct the formal
specification of the code they are verifying. This slows the process
of developing proofs.

Over the course of four years developing code-level proofs in
Amazon Web Services (AWS), we have developed a proof methodol-
ogy that allows us to produce proofs with reasonable and predictable
effort. For example, using these techniques, one full-time verification
engineer and two interns were able to specify and verify 171 entry
points over 9 key modules in the AWS C Common1 library over a
period of 24 weeks (see Sec. 3.2 for a more detailed description of
this library). All specifications, proofs, and related artifacts (such as
continuous integration reports), described in this paper have been
integrated into the main AWS C Common repository on GitHub, and
are publicly available at https://github.com/awslabs/aws-c-common/.

1.1 Methodology
Our methodology has four key elements, all of which focus on com-
municating with the development team using artifacts that fit their
existing development practices. We find that of the many different
ways we have approached verification engagements, this combina-
tion of techniques has most deeply involved software developers in
the proof creation and maintenance process. In particular, developers
have begun to write formal functional specifications for code as they
develop it. Initially, this involved the development team asking the
verification team to assist them in writing specifications for new

1https://github.com/awslabs/aws-c-common
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features. Increasingly, the development team has been writing for-
mal specifications themselves and adding them to their code base.
In this paper, we describe the principal reasons our relationships
with software development teams have been so positive. The lessons
we have learned (re-)emphasize that the human factors and social
process of software development are as important as the technical
aspects of formal verification when it comes to the adoption and
integration of code-level proofs in industry. These lessons are:

Make specifications explicit in source code. Tying the specifica-
tion directly to the source code helps the developers understand what
has been proven. As much as possible, formal specifications should
follow the idioms and style that the development team is familiar
with. Although there are properties which can be difficult to specify
using standard coding idioms (such as properties involving temporal
logic or separation logic), we have found that in practice the benefit
of using idioms developers understand outweighs the potential loss
of expressive power.
Formal specifications act as documentation for library users. And
they provide a systematic way for the development team to reason
about the conditions we are proving, and to clearly see whether they
are consistent across the code base.
In our experience, the best way to include specifications is by adding
them as precondition and postcondition assertions directly in the
code base. Making specifications explicit in the code helps to ensure
that they remain accurate as the code is updated, and validates the
use of specification assumptions in proofs. In particular, adding
specifications as runtime-assertions in the code allows developers to
interact with the specifications using the same tests they are already
familiar with (Sec. 4.3).
Write proofs-harnesses in declarative style. Unit-test like proof-
harnesses provide the development team with a familiar conceptual
model when entering the world of proofs. They also make life easier
for the verification team: having a recipe for how to write proofs
meant that new team members with little familiarity were able to
write high-quality proofs within weeks. Our methodology has im-
proved to the point where one new member was able to prove 1500
lines of embedded operating system code in a month, in contrast
to 2 years ago when an expert took 2 months to verify 700 lines
of firmware. The declarative style made it easy for us to audit the
proofs produced before submitting them to the development team
(Sec. 4.1).
Integrate proof artifacts into the development workflow. Making
proof artifacts part of the regular workflow decreases developers’
cognitive burden and allows them to treat our proofs as ‘just another
test suite,’ albeit a vastly more thorough one. In particular:
∙ we merge the proofs into the target code base, such that they

become part of the source distribution;
∙ as part of this merge, we ask the developers to review the proofs

like any other code contribution;
∙ once merged, the proofs are routinely checked along with all other

checks done in the teams’ continuous integration;
∙ our continuous checking system has low latency and is highly

reliable.
This provides value to customers and the developer teams by guaran-
teeing that the code remains correct at any point in time (Sec. 4.4).

Fix bugs instead of just reporting them. Providing bug-fixes in-
stead of bug-reports saves the development team effort, and gets
fixes to customers faster. We discovered that it also saves time for
the verification team, first, by reducing the communication overhead
involved in the bug report, and, second, by enabling immediate proof
for the fixed code while it is still fresh in the finder’s mind. Most
importantly, delivering bug fixes helps to build a trustful relationship
with the development team, which becomes more responsive and
receptive to the verification team’s feedback (Sec. 4.2).

1.2 Results
Our experience using the proof methodology has been:
Increased proof speed. Our data shows that our proof development
has indeed accelerated as a result of our method. Using these tech-
niques, one full-time verification engineer, plus two interns, were
able to specify and verify 171 entry points over 9 modules in the
AWS C Common library over a period of 24 weeks (see Sec. 3.2 for a
more detailed description of this library). As we refined our method-
ology, our proof productivity increased, as shown by the number of
lines of code proven over time in Fig. 1. The flattening that occurs
at the end of August represents us having reached our verification
target. Now, further verification only occurs on an as-needed basis.
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Figure 1: Cumulative number of LOC proven.

Increased rate of bugs found and fixed. As part of this effort, we
found and fixed 83 issues (see Tab. 1 and Sec. 4.2 for further details).
Our rate of finding bugs increased as we refined our methodology
(see Fig. 2). As above, the flattening that occurs at the end of August
represents us having reached our verification target. And because
we provided patches, not just bug reports, bugs were fixed quickly —
the median time from bug report to fix being merged was 5 days.
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Figure 2: Cumulative number of issues found.
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Active developer engagement with proofs. Developers took an ac-
tive role in reviewing both proofs and specifications, as witnessed by
their comments on GitHub pull requests that introduced new proofs
(Fig. 5).
Increase in lines of specifications written by developers. Formal
specifications written by developers is a key metric of success. By
the time we reached our verification target in August, developers
had added 89 contracts to their code, depicted in Fig. 4. Section 4.3
explains why our style of writing code contracts has been easy for
developers to adopt.

2 RELATED WORK
There are a number of powerful static analysis tools such as Infer [6]
and Coverity [4]. These are highly effective bug-hunting tools, but
they do not prove that a program satisfies a specification. This paper
is about proof, and drawing developers into the proof process.

Similarly, there is a body of work about how to organize the
process of writing proofs by formal verification experts, such as
Aagaard et al. [1], but this paper focuses on improving the interaction
between formal verification and development teams.

There has been significant work on proving conformance to spec-
ification. For example, Chudnov et al. [9] demonstrate the confor-
mance of the s2n HMAC to a formal HMAC specification. In our
world the formal specification does not exist: this paper is about
a methodology to efficiently extract a formal specification for an
existing implementation.

Over the last 16 years, automated reasoning techniques (e.g.,
model checking) have evolved significantly [10, 15]. As a conse-
quence, several software verification frameworks have emerged
in the literature [5]; with many applications in the industrial set-
ting [7, 12, 14, 27]. Some papers [8, 20, 23] describe how human
factors impact the adoption and integration of formal verification
techniques into well-established software engineering process. Hu-
man factors played a significant role in our experience as well.

Ball et al. [3] described many pitfalls faced by Microsoft as they
introduced the Static Driver Verifier (SDV) in the development pro-
cess of device drivers. Similar to our experience, the report recog-
nizes social factors (such as identifying champions and management
buy-in) in addition to technical decisions as important to the success-
ful adoption of SDV by Windows device driver developers. Sadowski
et al. [27] present how Google uses static analysis tools and high-
light two important aspects: static analysis authors should focus on
feedback from developers as well as carefully consider workflow
integration as it is key for adoption. Both points are confirmed by
our case study as discussed in Section 4. O’Hearn [26] describes
continuous reasoning as a concept of performing static analyses
at every change during the development process at Facebook. He
characterizes the use of other, more heavyweight, formal techniques
(e.g., bounded model checking) in similar continuous settings as
an open scientific challenge. O’Hearn also highlights that reporting
static analysis results during code review is crucial to achieving a
higher fix rate [14], which is reaffirmed by our work (cf. Sec. 4.4).

The idea that unit test harnesses are well-understood by devel-
opers and are therefore a base from which to build-upon is used by
parameterized unit tests [29]. In this approach, unit tests are param-
eterized so that they become algebraic specifications amenable to

analysis using randomized testing or dynamic symbolic execution.
Unlike our methodology aimed at code-level proof, the aim of pa-
rameterized unit tests is to amplify unit tests with better coverage
through automatic test generation.

Annotation languages for static analyzers such as Microsoft’s
Simple Annotation Language (SAL) [24] and ESC/Java [18] are
designed for lightweight static checking and to make annotated code
more understandable, both for humans and code analysis tools. Sim-
ilar to our choice regarding annotations, the annotation language for
ESC/Java was designed to be as close to the source-language (Java)
as possible for ease-of-learning and readability. Both tools operate
at compile-time of the code, which is advantageous for being more
tightly integrated into the workflow of a developer than in continuous
integration. The use of model checking in our methodology means
that we trade off this tight feedback for more heavyweight analysis.

3 BACKGROUND
The focus of our work is the foundational security of software run-
ning in AWS data centers, SDKs, and devices. The breadth of our
work includes boot code [13], network communication protocols,
real-time operating system code, an SDK implementing data struc-
tures, and an SDK facilitating principled use of cryptographic primi-
tives.

3.1 CBMC and Program Verification
We verify code using CBMC [11], a bit-precise bounded model
checker for C. CBMC is by default a bounded model checker, but
we run CBMC with the --unwinding-assertion flag, which ensures
we have fully checked the model. Given a C program and loop
unwinding bounds, CBMC constructs a Boolean satisfiability (SAT)
formula that is satisfiable if and only if an assertion violation is
reachable from the entry point of the program. The assertions are
derived from user-defined properties (using assert statements) or
automatically generated specifications, such as absence of memory-
safety violations. CBMC then uses a SAT solver such as MiniSat [16]
to compute the satisfiability of the formula. If the SAT solver returns
“satisfiable,” then the assertion can be violated, and CBMC generates
an error trace from the model returned by the SAT solver. If the
SAT solver returns “unsatisfiable,” this provides mathematical proof
that no assertion can be violated in the given program. The third
possibility is that CBMC (including the underlying SAT solver) runs
out of resources (e.g., time or memory), and no result is returned.

If the SAT formula is found to be unsatisfiable, the absence of
assertion violations is guaranteed to hold for all possible executions
starting at the program entry point. This contrasts with traditional
testing, where the result of a test may only apply for the concrete
inputs used: the success of a unit test on a set of inputs provides
no guarantee about whether there are other inputs on which the test
would fail.

The main technical challenge of using CBMC is writing the proof
harness. These challenges are:

(i) Determining the correct loop-unwinding bounds for the bounded
model checker; (ii) Correctly constraining the inputs to the entry
point being verified., and (iii) Using techniques, such as modular ver-
ification and limited inputs sizes, to address cases where the solver
runs out of resources.
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3.2 The AWS C Common Library
We discuss the rest of the paper in the context of proving the memory
safety of AWS C Common. AWS C Common is an open-source C99
package that provides cross platform configuration, data structures,
and error handling support to a range of other AWS C libraries,
including widely used AWS SDKs. The library is the foundation of
many security related libraries, such as the AWS Encryption SDK
for C. Verifying it is a critical first step towards ensuring the security
of those libraries. In particular, we focused on the modules used
by the AWS Encryption SDK for C. We have proven functions that
account for 98% of function calls into AWS C Common by the AWS
Encryption SDK for C (the remaining 2% use concurrent features
that are outside the scope of our current verification tools).

3.3 Properties Proved
We proved that key components of AWS C Common are memory
safe, i.e. do not suffer from issues such as buffer overflow, use
after free, or invalid pointer dereferences. Memory safety errors are
routinely listed among the most critical security concerns by industry
groups monitoring CVEs [17, 25, 28, 30]. In addition to memory
safety, our proofs guarantee the absence of a subset of undefined C
behavior [22], like division-by-zero and arithmetic overflow.

4 METHODOLOGY
This section describes the four pillars of our methodology, and how
they have resulted in our successful interaction with developers. We
take the position that proofs, invariants, and code contracts need not
be arcane and inscrutable; we have actively strived to ensure that
both our proofs and the development process that surrounds them
blend in seamlessly with developers’ own code and processes. While
the idea that program proofs are ‘nice to have’ is uncontroversial, we
believe that developers’ enthusiastic and reciprocal involvement with
our work is due in great part to our adoption of this methodology.

Section 4.1 presents our proof style and explains why our proofs
are familiar and easy to read by developers. Apart from proof ma-
terial, we often contribute code in the form of bug fixes and other
refactoring. Section 4.2 describes these contributions and how they
have helped to earn the developers’ trust. While these contributions
were welcome, the most direct validation of our utility to developers
has been their contributing 89 (and counting) code specifications
for functions that they wrote. These specifications, like our proofs,
are written in the C language; Sec. 4.3 describe the specifications
and explains their keen adoption by developers. Finally, our follow-
ing of a style that developers find familiar doesn’t stop at our code
and proof contributions: Sec. 4.4 describes how our proof-creation
processes emulate those that developers use.

Running example. In AWS C Common, an array list is a polymor-
phic variable-length array, which dynamically grows as elements are
added to it.
struct aws_array_list {

struct aws_allocator *alloc;
size_t current_size;

size_t length;

size_t item_size;

void *data;
};

Here, alloc represents the allocator used by the list (to allow con-
sumers of the list to override malloc if desired), current_size repre-
sents the bytes of memory that the array has allocated, length is the
number of items that it contains, data_size represents the size of the
objects stored in the list (in bytes), and data points to a byte array in
memory that contains the data of the array list.

Users of this data structure are expected to access its fields using
getter and setter methods, although C does not offer language support
to ensure that they do so. Similarly, since the C type system does not
have support for polymorphism, authors of the getters and setters are
responsible for ensuring that the list is accessed safely. For example,
here is the getter for array_list (notice how it ensures memory
safety):
int aws_array_list_get_at_ptr(

const struct aws_array_list *list,
void **val,
size_t index)

{

if (aws_array_list_length(list) > index) {
*val = (void *)((uint8_t *)list->data +

(list->item_size * index));

return AWS_OP_SUCCESS;
}

return aws_raise_error(AWS_ERROR_INVALID_INDEX);
}

4.1 Proof Style
We have developed a style of writing proofs that we believe is read-
able, maintainable, and modular. This style was driven by feedback
from developers, and addresses the need to communicate exactly
what we are proving to developers and users. Our proofs have the
following features:
∙ They are structured as harnesses that call into the function being

verified, similar to unit tests. This makes it easy to see how they
work, as developers can ‘execute’ the proof in their heads. This
style also yields more useful error traces.
∙ They state their assumptions declaratively. Rather than creating

a fully-initialized data structure in imperative style (as in [21]),
we create unconstrained data structures and then constrain them
just enough to prove the property of interest. This means the only
assumptions on the data structure’s values are the ones we state in
the harness.
∙ They follow a predictable pattern: setting up data structures, as-

suming preconditions on them, calling into the code being verified,
and asserting postconditions.

The following code is an example of a proof harness:
void aws_array_list_get_at_ptr_harness() {

/* initialization */

struct aws_array_list list;
__CPROVER_assume(aws_array_list_is_bounded(&list));

ensure_array_list_has_allocated_data_member(&list);

/* generate unconstrained inputs */

void **val = can_fail_malloc(sizeof(void *));
size_t index;

/* preconditions */

__CPROVER_assume(aws_array_list_is_valid(&list));

__CPROVER_assume(val != NULL);
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/* call function under verification */

if(!aws_array_list_get_at_ptr(&list, val, index)) {
/* If aws_array_list_get_at_ptr is successful ,

* i.e. ret==0, we ensure the list isn ' t
* empty and index is within bounds */

assert(list.data != NULL);

assert(list.length > index);

}

/* postconditions */

assert(aws_array_list_is_valid(&list));

assert(val != NULL);

}

The harness shown above consists of five parts:

(1) Initialize the data structure to unconstrained values. We devel-
oped initializers for all verified data structures using a consistent
naming scheme:
ensure_data_structure_has_allocated_data_member().

(2) Generate unconstrained inputs to the function.
(3) Constrain all inputs to meet the function specification and as-

sume all preconditions using assume statements. If necessary,
bound the data structures so that the proof terminates.

(4) Call the function under verification with these inputs.
(5) Check any function postconditions using assert statements.

This style of writing a proof harness is motivated by our desire to
make assumptions explicit to developers. This style consists of two
steps. The first step does the minimal work required to imperatively
allocate structures with unconstrained fields, as described in Items
1 and 2 in the above list. The second step uses assume statements
to enforce the specification about the values that go in those fields
(Item 3). This makes the specification used in the proof harness clear
and allows them to be further reused as assertions in the mainline
code (cf. Sec. 4.3).

Syntactically, a proof harness looks quite similar to a unit test.
The main difference is that a proof harness calls the target function
with a partially-constrained input rather than a concrete value; when
symbolically executed by CBMC, this has the effect of exploring the
function under all possible inputs that satisfy the constraints.

In fact, historically, we started from unit tests, and tried to make
them symbolic by replacing concrete values with unconstrained
values. We found this difficult, since there are relations that constrain
fields in a data structure and must be enforced (e.g., length <
capacity and capacity , 0 ⇒ buffer , NULL). Even worse,
these imperative proof-harnesses turned out to be difficult to reason
about and to explain to the development team.

The preconditions used as assumptions in (Item 3) are developed
using an iterative process. For each module, we start by specifying
the simplest predicates that we can think of for the data structure
— usually, that the data of the data structure is correctly allocated.
Then we gradually refine these predicates, until the development
team accepts them as reasonable invariants for the data structure,
aided by having all the unit and regression tests pass.

Using this process, we defined a set of predicates for each data
structure in the C source file so that they can be easily accessed
and modified by the library developers, and so that they serve as
documentation for the library’s users. For instance, in the case of
the array_list, we started with the invariant that data points to

current_size allocated bytes. After several iterations, the validity
invariant for array_list ended up looking like this:

bool aws_array_list_is_valid(

const struct aws_array_list *list) {
if (!list) return false;
size_t required_size = 0;

bool required_size_is_valid =

(aws_mul_size_checked(list->length,

list->item_size ,

&required_size)

== AWS_OP_SUCCESS);

bool current_size_is_valid =

(list->current_size >= required_size);

bool data_is_valid =

((list->current_size == 0 && list->data == NULL)

|| AWS_MEM_IS_WRITABLE(list->data, list->

current_size));

bool item_size_is_valid = (list->item_size != 0);

return required_size_is_valid
&& current_size_is_valid

&& data_is_valid && item_size_is_valid;

}

The invariant above describes four conditions satisfied by a valid
array_list:

(1) the sum of the sizes of the items of the list must fit in an un-
signed integer of type size_t, which is checked using the func-
tion aws_mul_size_checked (see Sec. 4.2.2 for a discussion of the
integer overflow issue this addresses).;

(2) the size of the array_list in bytes (current_size) has to be larger
than or equal to the sum of the sizes of its items;

(3) the data pointer must point to a valid memory location, or must
be NULL if the size of the array_list is zero;

(4) the item_size must be positive.

Item 3 stemmed from a protracted discussion with the developers.
Some members of the team felt that in the case of a zero-length array,
the value of the pointer was irrelevant; others felt equally strongly
that a un-allocated buffer must be NULL. Having a single is_valid
function helped in quickly converging on a consistent specification.

A significant contribution of this work is a library of allocators
and validators for each data type. The availability of this library
accelerated proof construction and reduced proof size. In total, there
are 1.4 kLOC of helper code (with 1.1 kLOC comments), supporting
3.5 kLOC of proof harness (with 3.1 kLOC comments). The average
proof harness consisted of 20 LOC (standard deviation 8.4), with a
similar number of lines of comments.

4.2 Finding and Fixing Bugs
In our experience, high-quality bug reports are one of the most effec-
tive techniques for getting the attention of developers, and demon-
strating to them the immediate value of formal code specification
and proof. Formal verification has the ability to find classes of sub-
tle bugs that can escape traditional testing. Once bugs have been
found, the trace demonstrating the proof failure, together with the
specification, can be instrumental in root-causing the issue. Once
the bug is root-caused, formal specification enables a proof that the
bug is fixed. The success of formal specification in finding subtle
bugs is therefore a strong incentive for developers to both accept
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such specifications into their existing code bases, and to write new
specifications as they write new features. However, the ultimate mea-
sure of formal verification is the value it provides to the customers
of the library. Hence, we argue that the success of a formal verifi-
cation engagement should not be evaluated based on the number of
bugs found, but based on the correctness of the final target code, i.e.
measuring the number of bugs that were fixed.

Finding bugs is a technical process: write the harness, write the
assertions, run CBMC, get the error trace, debug the error trace,
confirm the existence of a bug. But fixing bugs is a much more
complicated social process that can require extensive coordination
between the development and verification teams, followed by signif-
icant time and effort from the development team. It is well known
that bug hunting tools like Fortify and Coverity can generate bug
reports faster than developers can fix them [26]. Instead, we reduce
the overhead on the development team by reporting bugs in the
form of pull requests with (manually written) patches, along with
a CBMC proof that the patch fixed the issue. This led to the fixes
being promptly applied: 100% of the issues discovered during this
engagement have been fixed.

Figure 3 depicts the lines of non-proof code we have contributed
to the code base, in the form of bug-fixes, refactoring, and other
improvements. It neatly complements Fig. 4, which shows devel-
opers adding contracts to their own code. These results show the
result of proof-writers assuming the role of software developers,
and vice versa: developers contribute their detailed understanding
of the program’s specification in the form of code contracts, and
proof-writers improve the original code base through the knowledge
gained during the proof process.

A formal proof integrated into continuous integration (CI) pro-
vides confidence that the fix is complete, and acts as a super-charged
regression test (in fact, the development team agreed that we did not
need regression tests for patches that came associated with proofs).
And in the cases where there was discussion about the severity and
scope of the bug, that discussion could occur guided by a concrete
fix.

This focus on delivering solutions was a key factor in building
trust with the development team. From the point of view of the
verification team, the act of writing bug-fixes helped us understand
both the code and the development methodology underlying it. From
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Figure 3: Cumulative number of non-proof LOC added to code
base by the verification team.

Table 1: Severity and root cause of issues found.

Severity
Root cause # issues High Medium Low

Integer overflow 10 (12%) 2 8 0
Null-pointer deref. 57 (69%) 0 14 43
Functional 11 (13%) 0 4 7
Memory safety 5 ( 6%) 0 5 0

Total 83 2 31 50
(3%) (37%) (60%)

the point of our relationship with the development team, showing that
we have taken the time to understand their code, and by showing our
solutions, helped the developers feel at ease trusting our judgment,
to the extent that several members of the verification team were
granted commit privileges to the AWS C Common repository. Also
notable is the fact that the third and fifth most prolific contributors
to the AWS C Common code base are verification team members.

4.2.1 Issues Found. We verified 171 entry points over 9 modules
in the AWS C Common library. In the course of developing these
proofs, we reported 83 issues to the development team. For every
bug we found, we wrote a patch, and a formal proof of correctness
for that patch. In total, we filed 24 pull requests (some of which fixed
more than one issue), 100% of which were accepted and merged by
the development team. The median time from issue reporting to fix
being merged was 5 days; the mean was 9 ± 10 days.

Table 1 gives a breakdown of these issues by severity and root
cause. Note that although each bug was classified according to its
root cause, many bugs had cross-cutting impacts. For instance, we
found cases where both integer overflow and null-dereference bugs
could potentially lead to memory-safety issues.

4.2.2 Example: Integer overflow issues in aws_array_list. In C,
signed integer overflow represents undefined behavior; unsigned
overflow, while defined, often leads to unexpected results, including
the bypassing of safety checks. We discovered 10 integer overflow
issues in AWS C Common. Many of these issues were subtle, and had
evaded the extensive unit and integration testing used by the AWS C
Common development team. For example, when an aws_array_list
is initialized, the number of bytes required for the array is calculated
by multiplying the required length of the array by the item size. If
this multiplication overflows, an insufficient number of bytes may
be allocated. Concretely, consider a 32-bit machine, where the user
attempts to create an aws_array_listwith length 230 and item_size 26.
After multiplication, the seemingly valid array will have an allocated
size of 24 bytes, too small to hold even a single element!

Since C does not have a standard representing overflow-safe arith-
metic, preventing integer overflows in C code can be difficult. We
added a set of safe arithmetic functions, and used them throughout
the code wherever CBMC reported a potential integer overflow —
for example, in the aws_array_list_is_valid() function described in
Sec. 4.1. These arithmetic functions were performant and safe, and
we used them widely. Instead of arguing over whether a particular
trace was possible, or likely, we simply fixed the problem anywhere
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it could occur. Once the fixes were in place, the CI system ensures
that any change introducing a new integer overflow issue will trigger
a proof failure and raise an alarm.

On the other hand, having proofs made it possible to identify
locations where integer overflows could never occur, making the
use of the safe functions unnecessary. For example, the specification
of aws_array_list guarantees that integer overflow can never occur,
so methods like aws_array_list_get_at_ptr() can safely use standard
multiplication.

4.2.3 General Code Improvements. The act of writing both proofs
and patches for the AWS C Common code base helped turn the veri-
fication team members into AWS C Common developers. One area
this surfaced was in the repeated discovery of potential code im-
provements during code development. For example, while verifying
the hash_table implementation, we realized that the code would be
both clearer and easier to verify if it were refactored into a set of
utility functions; we did so, provided proofs of correctness of the
new functions, and had the changes merged. In another case, we
noticed code that performed a malloc followed by a memset(0), which
we replaced with a clearer (and potentially more performant) calloc.

One of the most unexpected wins from code-refactoring came
from the treatment of static inline functions, which are used ex-
tensively in AWS C Common, but were causing issues when we
were building our proofs. We refactored the functions into .inl files,
and added pre-processor directives which controlled whether the
functions within these files would be treated as static inline, or
have normal C linkage. Although this change was merely intented
to regularize the module structure of AWS C Common, and simplify
our build process, we were recently informed by the development
team that it turned out to be critical to a workaround for a gcc 4.8
bug that was preventing them from compiling the code on older
versions of Linux.

4.3 Function Contracts
Function contracts are distinct from program proofs: they are embed-
ded in the code base itself, and express the developers’ expectations
about the function’s pre- and postconditions. Our function contracts
are written in C, ensuring that developers can easily understand them.
Figure 4 demonstrates that developers find these contracts valuable:
following our lead, developers started adding contracts to their own
code as part of the normal development process.

Our proof methodology helps to clearly state the specifications
about the environment of a function. As Sec. 4.1 describes, these
specifications mostly refer to the well-formedness of input arguments
and expectations for the value of the global state. Running a proof
harness checks that a function satisfies the harness assertions, given
that the specification holds. This means that if the specification in
the proof harness is too strong, i.e., there are cases where the caller
of the function does not satisfy them, the proof does not hold. This is
a common source of bugs, even in previously verified systems [19].

Specifications have to be scrutinized to ensure that they are re-
alistic. Both the developers and the verification team check the
specifications in the proof harnesses using careful code reviews,
which do increase confidence in them, but do not eliminate all doubt,
since there is still a window of human error. To tackle this issue,
we embed the specification for each function in the code, in the
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Figure 4: Cumulative number of function contracts the devel-
opment team added to their own code base.

form of assertions written in C. Explicitly annotating these specifi-
cations as AWS_PRECONDITION and AWS_POSTCONDITION rather than simple
assert statements helps distinguish function contracts from internal
error-checking assertions.

int aws_array_list_get_at_ptr(
const struct aws_array_list* list,
void **val,
size_t index)

{

AWS_PRECONDITION(aws_array_list_is_valid(list));

AWS_PRECONDITION(val != NULL);

if (aws_array_list_length(list) > index) {
*val = (void *)((uint8_t *)list->data +

(list->item_size * index));

AWS_POSTCONDITION(aws_array_list_is_valid(list));

return AWS_OP_SUCCESS;
}

AWS_POSTCONDITION(aws_array_list_is_valid(list));

return aws_raise_error(AWS_ERROR_INVALID_INDEX);
}

The first specification requires that the input list satisfies the validity
invariant and the second specification requires that the val points
to an allocated object. Each specification is turned into assertions
when the tests are run and when the code is executed in debugging
mode. The function also contains assertions about its postconditions,
i.e., it preserves the validity invariant of the input list. This increases
our confidence about the validity of the specifications, as they are
checked in all tests of the library, as well as in the tests of other
downstream projects that depend on the target library. For instance,
we were able to detect inconsistent test cases at the AWS C IO
project2 (later confirmed by the developers) through the insertion of
pre- and postconditions in AWS C Common.

Furthermore, predicates are also implemented as Boolean func-
tions in the source code, which are all checked using standard as-
sertions in plain C. Writing the specifications and predicates using
the same language adopted in the project enabled developers to get
more involved in the proof process, as they don’t have to learn a
new specification language. Although it is more verbose to express
properties in C and it might be impossible to express some properties
at all, this is a trade-off that has to be made so that developers get
involved in the process.

2The fix was merged via https://github.com/awslabs/aws-c-io/pull/132
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Note that the preconditions generated by this methodology are
not necessarily mathematically minimal, the postconditions are not
necessarily mathematically maximal, and we should expect them
to be neither minimal nor maximal. For instance, consider a func-
tion clone_foo(foo* dst, foo* src). Local correctness of this func-
tion may simply require that the objects pointed to by src and dst
are allocated; global correctness of the program may require that
src has been correctly initialized, and that the current ref count of
dst be zero. The goal of the methodology is to determine the set
of consistent global validity constraints that represent the intent of
the development team, which often differs from the weakest pre-
condition necessary to make a particular function correct in the
mathematical sense. Overall, integrating specifications in the code
increases our confidence about their validity and whether they are
realistic, in the following ways:

(1) specifications are checked in all test runs;
(2) it is easier for the developers to get involved in the proof-review

process, as approving a specification means that they add an
assertion in their code;

(3) specifications stay in sync with the code more easily, as they are
co-located with the function implementation, and not in some
detached proof harness; and

(4) specifications in the code can also act as documentation for
library users, as they explicitly specify how a client should call
the external functions of the library.

4.4 Integrating with Developers’ Workflow
The previous sections described how we write our proofs in a style
that developers find familiar, making it more likely that the devel-
opers will scrutinize and engage with our proofs. Emulating de-
velopers’ working style does not stop with the proofs themselves,
however. Our entire proof development process and infrastructure
also closely mimics the processes that developers are familiar with.
This decreases developers’ cognitive burden and allows them to treat
our proofs as ‘just another test suite,’ a very thorough test suite.
Specifically, we believe that four aspects of our development process
contribute to our success with developers:

∙ we merge the proofs into the target code base, such that they
become part of the source distribution;
∙ as part of this merge, we ask the developers to review the proofs

like any other code contribution;
∙ once merged, the proofs are continuously checked, and the results

are presented beside other test results;
∙ our continuous checking system has remarkably low latency and

is highly reliable.

We elaborate on these points in the following subsections.

4.4.1 Proofs in the Source Distribution. Our proofs do not live in
a separate repository. Rather, we add the proofs to the code base that
they apply to, giving the developers a sense of ownership. Developers
(including external contributors) who move or rename files or change
public APIs are thus responsible for also ensuring that proofs that
link to those files continue to apply. This encourages developers to
think of the proofs as part of the source code, rather than a separate
artifact that may safely be ignored.

Contributing the proofs to the repository also means that users
of the software receive the proofs, and we provide instructions for
users to run the proofs on their own machines. In some cases, our
proofs are explicitly presented as a reliability assurance mechanism
that gives users greater trust in the software [2]. Having the proofs
as publicly-consumable artifacts provides another motivation for the
developers to understand and engage with the proofs.
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Figure 5: Number of developer comments on each pull request.

4.4.2 Proof Review. The previous paragraph noted that our proofs
are part of the software that AWS offers to users, rather than an
internal effort that users cannot audit. This makes it imperative that
the proofs we add to the repository are of exemplary quality and
have the developers’ stamp of approval. We ensure this through
the same mechanism as any other code contribution: by asking
developers for a public code review. The fact that our proofs are
written in the developers’ working language decreases their cognitive
burden during review, and they review our proofs using the same
web interface as for other contributions. Figure 5 shows the number
of review comments that developers have made on each of our pull
requests.

During review, developers feel free to (i) question the assumptions
that we made in our proofs; (ii) suggest additional properties that
we could check, and (iii) address our questions about the code.
Item (iii) is particularly important when our proofs find ‘benign’ bugs
— that is, cases where developers intentionally use some potentially-
unsafe language feature like arithmetic overflow. In such cases,
we ask the developers to confirm that the feature was intentional
before suppressing the error; thirteen benign integer overflows have
been annotated this way. This ensures that we find real bugs when
they do exist, involving developers in the bug-finding process; and
gives developers an opportunity to consider whether their use of the
language feature really is safe under all circumstances. Items (i) and
(ii) help developers to ‘become’ members of the proof team, allowing
them to contribute their thoughts on what we should be proving. The
fact that the developers themselves are in the best position to offer
these suggestions means that proof review is a mutually-insightful
process, with the proof team and development team learning about
each other’s work.

4.4.3 Continuous Formal Verification. Rather than ‘proving code
correct’ and moving on, a core aspect of our activity is ensuring that
code stays correct after our initial proof. We thus created a continu-
ous integration system that runs all proofs in the repository. Since
this process is automated, it can be triggered every time a developer
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proposes a code change by posting a ‘pull request’ on GitHub. This
mechanism allows developers to ensure that their changes will not
cause a previously-proved property to become invalid.

Figure 6: Continuous integration results on GitHub.

In keeping with the theme of using familiar tools and processes,
the results of our CI are displayed beside other test results on the
repository’s web interface, shown in Fig. 6. Each property that we
wrote a proof for has its result displayed using a tick or cross to
indicate whether the property continues to hold after the code change.
Developers thus have a peripheral awareness of our proof activity
even when all the proofs go through. Conversely, when a proof fails
to hold, developers are empowered to find and fix the problem by
browsing to the proof report using the ‘Details’ hyperlink. This
report gives developers a concrete trace that led to the violated
property, as well as an annotated source code listing that shows what
part of the code our proof covered. Developers can then fix their
code changes themselves or ask for our assistance. By presenting a
concrete failed trace, developers can think of the error as a ‘failed
test’ rather than the more vague notion of a property failing to hold
on some execution.

4.4.4 Reliability and Responsiveness of Proof in CI. Valuable
as continuous formal verification may be, it becomes much less
useful to developers if it slows down or otherwise burdens their
development process. Our experience is similar to O’Hearn, who
also describes the continuous application of a static analysis tool in
an industrial context [26]. O’Hearn mentions the importance of low
proof result latency (the time between the developer publishing a
change request, and getting feedback from the analysis tool). This
number depends not only on the speed of the analysis tool and the
size of the proof; it is also increased by the overhead that the CI
system introduces.

We thus designed the CI system to take advantage of our proof-
writing style, to the end of displaying the proof result to the developer
as quickly as possible. Our proofs may all be run in parallel, so
our CI system spawns a pool of proof jobs that all begin running
immediately and report their result back to GitHub as soon as they
are each finished. Therefore, the time taken to run all proof jobs is
very similar to the time taken to run a the longest one. The median
proof takes 88 seconds to complete. CI startup latency is 359 seconds
on average. For some of the projects we work on, our entire proof
suite completes before the developers’ own tests.

Our adherence to best practices for services means that our CI
works reliably; having high uptime is also important to develop-
ers’ experience with the system. Because the system is event-driven
— reacting to developers posting pull requests on GitHub — the
demands on the system fluctuate over the week, as Fig. 7 depicts.

Developers rarely post pull requests over the weekend, but the sys-
tem experiences a high load during working hours. We thus used a
serverless architecture that is able to seamlessly respond to periods
of high demand, and develop the system in a separate beta account
that we promote to production once we are confident of its reliability.
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Figure 7: Number of CI invocations per day over 40 days.

5 CONCLUSIONS & FUTURE WORK
We have described a proof development style that embeds the proof
creation and maintenance process in the software development cycle
to deeply engage software developers and, ultimately, help make
formal verification a routine activity. We have found that each time
we’ve made choices that provided value to the development team,
they also improved the ability of the verification team to effectively
perform our verification tasks. We highlight four takeaways from
this experience:
(1) make specifications explicit in the code;
(2) write unit-test like proofs in declarative style;
(3) integrate proof artifacts into the developer work-flow; and
(4) fix bugs instead of just reporting them.
The takeaways emphasize that the human factors and social pro-
cesses of software development are as important as the technical
aspects of formal verification. Indeed, this has been a reciprocal
activity where we have increased our proof activity and we have
seen developers take part in writing specifications for their code as
they became accustomed to the process.

As future work, we want to prove deeper properties for even
broader software code bases, while maintaining developer engage-
ment in the proof process. As a call-to-action for the community, a
critical future challenge that we see is the long-term maintenance
cost of proofs to ensure lasting software quality. How can proof
artifacts be kept in-sync with the code base after the verification
team has moved onto other projects? And, what can we do to ensure
that future developers fix proofs as a matter-of-course, just as they
would fix a unit test?
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