
Background

Making Data-Driven
Porting Decisions
with Tuscan

Kareem Khazem
Earl T. Barr
Petr Hosek

Software typically outlives the platform that it was written for. This necessitates regular
‘porting’ of software to new platforms, a tedious and ad-hoc process. We wrote a framework,
Tuscan, for automatically testing software portability to new platforms en-masse. We ran
Tuscan on 2,699 programs on four different platforms and found that the majority of programs
are locked in to a single platform, preventing them from building on other platforms. We also
wrote a build wrapper, Red, which provides insight into the reasons that builds failed, and
automatically fixes some of the most common build failures to help us gather more data.

C Standard Library

Compiler & linker

Architecture

glibc musl bionic uClibc

gcc clang lld gold

x86_64 AArch64 SPARC

Software relies on many components to build and
run—a selection of these components is called a
platform. Ideally, it should be possible to build a
program on many platforms without modifying it.

Several software projects have had difficulty when
porting their programs to new platforms. These
projects discovered portability problems as they went
along, and had to create time-consuming fixes on an
ad-hoc basis, duplicating efforts by other projects.

Alpine Linux
(using musl

as the C
standard
library)

Android
(userspace &
Linux kernel

now compiled
with Clang)

FreeBSD
(compiled
with Clang,
linked with

LLD)

Fuchsia
(using musl,
Clang, and

LLD)

https://karkhaz.github.io/tuscan

These issues are of concern to several groups:

- Software developers should like to ensure that
their programs are future-proof, i.e. able to be built
with innovative new build toolchains.

- Authors of new platforms must carefully evaluate
how much existing software will fail to build
because it is locked in to existing platforms.

- Projects migrating to new platforms need to
quantify the time cost of porting existing software.

Our Contributions
Tuscan

Tuscan solves several challenges that arise when
rigorously testing cross-platform builds. It uses a Linux
distribution to derive programs' dependency graphs and
avoid the details of how to invoke the myriad of extant
build systems. It uses containerisation to ensure that
builds are isolated from each other and happen in a
pristine environment. Tuscan exploits inter-program
build parallelism to ensure that the tests scale while
building individual programs serially to avoid non-
determinism from scheduling and parallelism.

We built an infrastructure to test the platform
portability of programs in the wild en-masse. In brief:

- We wrote Tuscan, an automated environment for
conducting deterministic tests on program builds
under a variety of platforms.

- We wrote Red, a build wrapper that provides deep
insight into why a build on a foreign platform failed.

- We used Tuscan and Red to build thousands of
programs on several platforms.

How It All Works

The diagram above shows how Tuscan builds a single program on a particular platform. On a single host
computer (dark U-shaped region), multiple containers (white center region) will be running at once,
building programs in reverse-dependency order. Once a program's dependencies have all been built and
placed in the repository on the left, they are copied into the container (1). The compiler, C standard library,
and other platform-specific tools are installed into the filesystem outside the usual file heirarchy (2).
Tuscan then attempts to build the program using a platform that it was not originally intended to run on
(the target platform, 3). If the build succeeds, Tuscan merges the target platform-built program with the
natively built program (4) so that any components of the program that need to run as build dependencies
of other programs are able to run natively. This "cross-platform program" is then copied out of the
container (5), at which point any programs that have a build-time dependency on that program can now
be built, so the cycle continues. By wrapping each build with Red, we can understand why a build failed.

Red

Red provides diagnostic information on every sub-
process spawned by a build, no matter what build tool is
used. Red wraps around the build of a program whose
portability we are testing, allowing us to understand the
most common reasons for portability-related build
failures. We used our catalogue of the most common
build failures to teach Red how to rescue a failing build.
Red can inject arbitrary code into a running process just
before a subprocess spawn, allowing it to correct
invocations that match a common pattern of build failure.

Results

Host
Cross-

platform
programs
built so far

Container

Repository of build platform programs

Sources for
all programs5. Program is copied

back onto host;
programs that depend
on this one can now be
built in a new container

1. Dependencies
installed to filesystem

2. Target platform tools &
libs installed to filesystem

3. Package built
from source using

target platform
4. Build & platform

packages merged
into cross package

usr
bin lib include

target-platform-root

bin lib

Platforms

Key:
A single

toolchain

Source files
for a single
program

Native
platform
program

Target
platform
program

Cross-
platform
program

Container
filesystem We used Tuscan to build 2,699 programs on four platforms:

- the native platform (the glibc C library and gcc compiler);
- glibc C standard library and clang compiler;
- musl C standard library and clang compiler;
- Bionic C library and Android gcc, compiled to Arm 32-bit.

Many programs fail to build outside of their native platform:

Successful builds per platform

gcc+glibc
(baseline)

clang +
glibc

clang +
musl

android +
bionic

There were several recurring causes of build failure:

Inclusion of non standards-conformat header files that don't
exist on some platforms, but which could easily be replaced;

Undefined references to symbols inadvertantly exported by
one implementation of the C standard library, but not others;

Hardcoded invocations to a particular implementations of
compilers or other build tools;

and many others. Our results web page contains full details
of all of the programs whose builds we tested, across all
platforms, and gives detailed insight into the build process
and reasons for build failure. We have identified concrete
issues that platform authors and software developers can
address, while providing a framework that can be used in
the future to ensure that software remains portable to new
platforms as they are developed.

